Journal of Organometallic Chemistry, 418 (1991) 359-363 Elsevier Sequoia S.A., Lausanne JOM 22053

Protonation of the d^2 tantalum complexes Cp₂Ta(L)H. Synthesis and structural studies of cationic dihydride complexes

Jean-François Leboeuf, Olivier Lavastre, Jean-Claude Leblanc and Claude Moïse

Laboratoire de Synthèse et d'Electrosynthèse Organométalliques associé au CNRS (URA 33), Faculté des Sciences, 6 bd Gabriel, 21000 Dijon (France)

(Received March 21st, 1991)

Abstract

Protonation of various d^2 tantalum complexes Cp₂Ta(L)H (L = PMe₂Ph, P(OMe)₃) gives cationic species whose structures are dependent on L. A dihydrogen-dihydride equilibrium is assumed for Cp₂Ta(P(OMe)₃)H₂]⁺.

Introduction

The basic properties of the d^2 monohydride complexes Cp₂M(L)H (M = Nb, Ta; L = bielectronic ligand) towards Lewis acid organometallic fragment [1] or Brönsted acids [1a,2] are now well established. Spectroscopic data suggest the symmetrical structure α for two cationic protonated complexes [Cp₂M(L)H₂]⁺, with the β toplogical isomer undetected.

Several examples of η^2 -H₂ complexes prepared by protonation of hydridometal complexes have been reported [3], and formation of the dissymmetric structure β could obviously be of great interest in connection with the existence of non-classical hydrides. We therefore decided to investigate the behaviour of several tantalum derivatives Cp₂Ta(L)H (L = PMe₂Ph or P(OMe)₃) in an acidic medium, and present our results below.

Results and discussion

Protonation of the phosphine complex $Cp_2Ta(PMe_2Ph)H$ (2) gave a mixture of the two structural isomers α and β . The ¹H NMR spectrum reveals the presence of

0022-328X/91/\$03.50 © 1991 - Elsevier Sequoia S.A. All rights reserved

a slight excess of the dissymmetric structure β (60:40) that might be due to a H⁺ preferential attack from the less hindered side of the 2a₁ lateral orbital [4]. Besides the appropriate cyclopentadienyl and ligand resonances (see Experimental section) two distinct patterns appear in the resonance range of the metallic hydrogen belonging to the symmetrical 2α (A₂X spin system, X = ³¹P) and dissymmetrical 2β (ABX spin system) isomers respectively. The data are listed in Table 1.

A more significant stereochemical induction occurred when the complex $Cp_2Ta[P(OMe)_3]H$ (3) was treated with HCl $(3\alpha/3\beta:30/70)$. The high field ¹H NMR spectrum showed resonance patterns similar to those of $2\alpha + 2\beta$, but analysis of the ABX spin (Fig. 1) system revealed a value for $J(H_A-H_B)$ of 81.6 Hz. This coupling constant is quite surprisingly large compared with that of the related complex 2β ($J(H_A-H_B) = 13.5$ Hz). In order to determine whether such a value could be assigned to an η^2 -H₂ ligand in a pure from or in a dihydrogen-dihydride equilibrium, we measured a T_1 by the inversion recovery method; a T_1 value of 900 ms was obtained, consistent with a classical dihydride structure [5]. Another spectroscopic criterion for the presence of a dihydrogen ligand is the value of the H-D coupling [6] and so we tried to convert 3β into its isotopomer. Treatment of complex 3 with aqueous DCl afforded exclusively the structurally dissymmetric cation as a mixture (50:50) of centrally- and laterally-deuteriated compounds. Analysis of the NMR spectrum revealed a value for J(HD) of about 1 Hz.

The J(HD) and T_1 values indicate mainly a dihydrido structure. However, formation of the centrally deuteriated complex by a direct inside approach of D⁺ seems unlikely, and the presence of an η^2 -HD form, even to a minor extent, cannot be completely ruled out.

Experimental

Infrared spectra were recorded on Perkin-Elmer 580B spectrometer; ¹H and ³¹P NMR spectra were recorded on a Jeol FX100 and a Bruker WM400 instruments, respectively.

All reactions were carried out under dry argon, and the solvents were dried by standard methods and distilled before use.

Preparation of $Cp_2Ta(PMe_2Ph)H(2)$

A slight excess (10%) of dimethylphenylphosphine was added to a suspension of 2.4 g (7.6 mmol) of Cp_2TaH_3 in decane (50 ml) and the mixture was kept at 140 °C for 3 h. The dark-colored mixture was evaporated, and the crude solid residue was

Table 1						
¹ H NMR data of complexes	2 α.	2 8,	3α	and	38	

		¹ H NMR (δ ppm/TMS; J Hz; CD ₃ COCD ₃)			
		Ta-H _A	Ta-H _B		
$\frac{C_{P}}{C_{P}} T_{a} = \frac{H_{A}}{H_{A}} T_{a}$	2α	-0.44 (d, 2, $J(P-H) = 71$)			
$ \begin{array}{c} Cp \\ Cp \\ Cp \end{array} \begin{array}{c} H_{A} \\ H_{B} \\ PMe_{2}Ph \end{array} $	2β	$-0.39 \text{ (m, 1, } J(H_A - P) = 11.5)$ $J(H_A - H_B)$	$-0.89 \text{ (m, 1, } J(H_B - P) = 75.5)$ = 13.5		
$C_{p} T_{a} = H_{A} T_{a} + H_{A} T_{a}$	3α	-1.51 (d, 2, J (P–H) = 86.2)			
$\begin{array}{c} C_{P} \\ C_{P} \\ T_{a} \\ H_{B} \\ P(OMe)_{3} \end{array}$	3β	-0.81 (m, 1, $J(H_A - P) = 10.4$)	$-1.93 \text{ (m, 1, } J(H_B - P) = 89.8)$		
		$J(\mathbf{H}_{\mathbf{A}}-\mathbf{H}_{\mathbf{B}})=81.6$			

washed with pentane $(2 \times 20 \text{ ml})$. Yield 65%. An analytical pure sample was obtained by recrystallization (diethyl ether/pentane) as brown crystals.

¹H NMR (C_6D_6): δ 7.61–7.07 (10H, m, Ph); 4.33 (10H, dd, J(P-Cp) = 2.1, J(H-Cp) = 0.6 Hz, Cp); 1.37 (6H, d, J(P-Me) = 7 Hz, Me); -9.20 (1H, dm, J(H-P) = 20.4 Hz, TaH). ³¹P{¹H} NMR (C_6D_6): δ +6.0 (s).

Preparation of $Cp_2Ta[P(OMe_3)_3]H(3)$

According to the above procedure, complex 3 was obtained (55% yield) as orange crystals.

¹H NMR (C_6D_6): δ 4.51 (10H, d, J(Cp-P) = 2 Hz, Cp); 3.34 (9H, d, J(Me-P) = 11 Hz, Me); -8.95 (1H, d, J(H-P) = 22.7 Hz, TaH). ³¹P{¹H} NMR (C_6D_6): δ + 196 (s).

Preparation of $[Cp_{2}Ta(PMe_{2}Ph)H_{2}]^{+}PF_{6}^{-}$ (2 α and 2 β)

A 1 *M* solution of aqueous hydrochloric acid (3 ml) was added at room temperature to a brown suspension of Cp₂Ta(PMe₂Ph)H (1.18 mmol) in THF (5 ml) and water (15 ml); the solid disappeared immediately after addition, and the THF-water solution became colourless. The solution was filtered and a solution of NH₄PF₆ (1.23 mmol) in water (5 ml) was added slowly at 0°C. The THF was removed by evaporation under vacuum to leave the mixture of the two diastereoisomers 2α and 2β as a white solid. The precipitate was filtered off, washed with cold water, and dried under vacuum (overall yield about 85%).

The ¹H NMR spectrum of the mixture indicates a 60/40 ratio for the isomers $2\alpha/2\beta$. Isomer 2α : ¹H NMR (CD₃COCD₃): δ 8.00–7.60 (5H, m, Ph); 5.75 (10H, dt, J(P-H) = 1.2, J(H-H) = 0.35 Hz, Cp); 2.17 (6H, d, J(P-H) = 9.1 Hz, PMe_2Ph); -0.44 (2H, d, J(P-H) = 71 Hz, TaH_2). ³¹P{¹H} NMR (CD₃COCD₃) δ -5.6 (s). Isomer 2β : ¹H NMR (CD₃COCD₃): δ 8.00–7.60 (5H, m, Ph); 5.72 (10H, d,

Fig. 1. ¹H NMR spectra of a mixture of $3\alpha + 3\beta$ in the hydride region (CD₃COCD₃; 100 MHz; TMS reference) on the top and computed spectrum of 3β on the bottom.

 $J(P-H) = 2.05 \text{ Hz, Cp}; 2.14 (6H, d, J(P-H) = 9.5 \text{ Hz, } PMe_2Ph); -0.39 (1H, m, J(P-H_A) = 11.5, J(H_A-H_B) = 13.5 \text{ Hz, } Ta-H_A); -0.89 (1H, m, J(P-H_B) = 75.5, J(H_A-H_B) = 13.5 \text{ Hz, } Ta-H_B). {}^{31}P\{^{1}H\} \text{ NMR (CD}_3\text{COCD}_3): \delta 12.0 (s). \text{ IR (isomers } 2\alpha + 2\beta): \nu(Ta-H) = 1795 \text{ cm}^{-1} (\text{Nujol}).$

Preparation of $\{Cp_2Ta[P(OMe)_3]H_2\} + PF_6^-$ (3 α and 3 β)

Similarly isomers 3α and 3β were obtained in a 30/70 diastereoisomeric ratio. Isomer 3α : ¹H NMR (CD₃COCD₃): δ 5.92 (10H, m, Cp); 3.86 (9H, d, J(P-H) = 11 Hz, $P(OMe)_3$; -1.51 (2H, d, J(P-H) = 86.2 Hz, TaH_2). ³¹ $P\{^{1}H\}$ NMR (CD₃COCD₃): δ 155.15 (s). Isomer 3β : ¹H NMR (CD₃COCD₃): δ 5.81 (10H, d, J(P-H) = 1.95 Hz, Cp); 3.99 (9H, d, J(P-H) = 11 Hz, $P(OMe)_3$); -0.81 (1H, m, $J(P-H_A) = 10.4$, $J(H_A-H_B) = 81.6$ Hz); -1.93 (1H, m, $J(P-H_B) = 89.8$, $J(H_A-H_B) = 81.6$ Hz).

³¹P{¹H} NMR (CD₃COCD₃): δ 160.6 (s). IR (isomers $3\alpha + 3\beta$): ν (Ta-H) = 1770 cm⁻¹ (Nujol).

References

- (a) J.F. Reynoud, J.C. Leblanc and C. Moïse, Organometallics, 5 (1986) 1863; (b) J.F. Reynoud, J.C. Leblanc and C. Moïse, Transition Met. Chem., 10 (1985) 291; (c) G. Bonnet, O. Lavastre, J.C. Leblanc and C. Moïse, New. J. Chem., 12 (1988) 551.
- 2 C.R. Lucas and M.L.H. Green, J. Chem. Soc., Chem. Commun., (1972) 1005.
- 3 R.H. Morris, J.F. Sawyer, M. Shiralian and J.C. Zubkowski, J. Am. Chem. Soc., 107 (1985) 5581; R.H. Crabtree and H. Lavin, J. Chem. Soc., Chem. Commun., (1985) 1661; F.M. Conroy-Lewis and S.J. Simrsan, ibid., (1986) 506 and (1987) 1675; M.V. Baker, L.D. Field and D.J. Young, ibid., (1988) 546; X.L.R. Fontaine, E.H. Fowles and B.L. Shaw, ibid., (1988) 482.
- 4 J.W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 98 (1976) 1729.
- 5 D.G. Hamilton and R.H. Crabtree, J. Am. Chem. Soc., 110 (1988) 4126; R.H. Crabtree, M. Lavin and L. Bonneviot, ibid., 108 (1986) 4032.
- 6 G.J. Kubas, Acc. Chem. Res., 21 (1988) 120.